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A theoretical model characterizing the explosive crystallization from a supercooled melt has been proposed
and analyzed. Taking account of the specific features of the cluster-coagulation model of crystallization and
the specific features of the experiment has made it possible to construct cooling curves adequate to the ex-
perimental ones.

Numerous experimental data [1–5], including those obtained by us [6–10], point to the fact that a consider-
able number of substances begin to crystallize at a temperature Tm lower than the melting temperature Tliq. In so
doing, the degree of supercooling of melts ∆T = Tliq − Tm for samples of mass from 0.1 mg to a few grams under
normal conditions and at cooling rates from 0.001 to 10 K/sec can reach dozens of degrees, e.g., for Bi, Sb, Sn, Te,
S, InSb, H2O, C6H5OH, C6H4(OH)2, etc.

To mathematically describe the cooling curve in the coordinates of T(τ) covering the region of supercooled
melt crystallization, let us consider the schematical experimental cooling curves (Fig. 1a and b) registered by the
method of cyclic thermal analysis (CTA) [6–10]. Figure 1 also shows their corresponding curves obtained by differen-
tial-thermal analysis (DTA) (Fig. 1c and d). The ABC section in Fig. 1a corresponds to the melt cooling down to
some temperature Tm < Tliq. The melt stays in the supercooled state for time τ1 (section BC). Upon cooling down to
the minimum temperature Tm, the sample is spontaneously heated to Tliq in time τ2 (line CD). The rapid rise in the
CD section points to the proceeding in the bulk of the superheated melt of the initial stage of crystallization with re-
lease of heat Q promoting rapid heating of the whole sample by ∆T−. Further solidification of the sample (section DE)
occurs isothermally at Tliq for time τ3. Upon solidification, the substance is cooled (section EF). Thus, the total crys-
tallization time τ ′ = τ1 + τ2 + τ3. We call the kind of crystallization given in Fig. 1a nonequilibrium-explosive crystal-
lization (NEEC).

The cooling curve in Fig. 1b (GHKL) corresponds to quasi-equilibrium crystallization (QEC) with insignificant
supercooling. As a rule, QEC is observed for melts that are not superheated to a temperature higher than some critical
temperature Tcr

+  > Tliq. The melt heated to above Tcr
+  crystallizes with supercooling ∆T−, whose mean value is practi-

cally independent of the degree of superheating of the melt. Experiments show [6–10] that the total solidification time
τ ′′ under QEC is always shorter than the total time τ ′ under NEEC.

In [11, 12], solutions of the thermal problems describing the cooling curves with crystallization are given.
However, they neglected the features of the cluster-coagulation models of crystallization of supercooled melts [7], in
particular, the explosive character of crystallization at the initial stage in time τ2, the rapid temperature rise from Tm
to Tliq, the difference between τ ′ and τ ′′ under QEC and NEEC, etc.

The aim of the present paper is to describe mathematically the cooling curve covering the crystallization re-
gion (Fig. 1), taking into account the features of the cluster-coagulation model, which will be presented in the course
of the problem solution.

Consider the test specimen–furnace system with temperature Tf. Denote the heat-transfer coefficient at the
specimen–furnace boundary as ζ. The ambient temperature (outside the furnace) is T0. Assume that the specimen
has a spherical form of radius R. Then the heat-conduction equation in the spherical system of coordinates with re-
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gard for the invariability in the considered temperature range of the heat-conduction coefficient λ of the specimen
is of the form
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 V0 + Q (r, t) ,   t ≥ 0 ,   0 ≤ r ≤ R , (1)

where T(r, t) is the temperature at each point of the specimen depending on the radius r and the time t and Q(r, t) is
the function of the heat-release sources inside the specimen. The boundary conditions for (1) are as follows:

T (r, 0) = Tliq ,   λ 




∂T
∂r



r=R

 = − ζ (T − Tf) + σε (T4
 − Tf

4)r=R
 . (2)

Here the first and second terms on the right side of the second expression represent the heat exchange of the specimen
with the furnace according to the Newton and Stefan–Boltzmann laws, respectively.

Let us write the heat-release function as

Q (r, t) = ∆Hliq 
dm
dt

 = ∆Hliqm0 
dη
dt

 , (3)

where η = m(t)/m0 is the degree of crystallinity. In this case, Q(r, t) is the heat released under crystallization of the
mass dm of the melt in the time dt.

Taking into account the slow cooling of the massive furnace with a miniature specimen, we can neglect the
characteristics of the thin-walled crucible (heat conductivity, heat capacity, etc.) and the processes occurring at the cru-
cible–specimen boundary. Neglecting the temperature difference between the center of the specimen and its boundary
and the second coordinate-derivatives, in view of (2), we can simplify expression (1). This is admissible, since in our
experiments the sizes of specimens (D1 cm) are much smaller than the furnace sizes. In [13], it was shown that the
use of small masses (up to 1 g) is fairly correct for these purposes. Thus, Eq. (1) with the boundary conditions (2)
will reduce to the relation

Fig. 1. Cooling curves of pyrocatechol of volume 0.8 cm3 characterizing crys-
tallization with supercooling (a) and without supercooling (b) obtained by the
CTA method and their corresponding DTA curves (c, d).
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 ,   T (0) = Tliq . (4)

In the DE section (Fig. 1a) crystallization occurs at an invariable temperature Tliq, and the degree η of solid
phase build-up obeys the Johnson–Mehl–Avrami equation [14]

η = 1 − exp (− Z (t − τ1 − τ2)
n) ,   t ≥ τ1 + τ2 , (5)

where τ1 is the incubation period of nucleation; τ2 is the time of explosive crystallization at the initial stage of solidi-
fication.

In the case of NEEC, for sections BC, CD, DE, and EF (Fig. 1a) expression (5) is unacceptable, since it de-
scribes the monotonic change in the phase and ignores the initial (explosive) crystallization in the CD section in the
time τ2. According to the cluster-coagulation model of crystallization [7, 15], in the melt, upon reaching under some
physical supercooling ∆T− the critical concentration in some region Vcr (of mass mcr) of the melt, the nuclei close with
one another, orient themselves with respect to one another, and coagulate in the time τ2. This is accompanied by a
release of heat Q = mcr∆Hliq, which leads to a heating of the whole specimen by a value of ∆T− from Tm to Tliq at
a rate v = 20–50 K/sec. Taking into account that the cooling rate of the furnace vc << v, one can give the heat-balance
equation without allowance for the heat loss as

mcr∆Hliq = m0cp∆T
−
 . (6)

Then the relative portion β of the crystallized region in which the critical density of nuclei was concentrated will be
equal to

β = 
mcr

m0
 = 

cp∆T
−

∆Hliq
 . (7)

Upon coagulation of nuclei in the time τ2, their number in the volume Vcr rapidly decreases, forming the in-
itial solid conglomerate. The process of unification of nuclei (in the CD section) in a time from τ1 to τ1 + τ2 can be
described by the equation [16]

nk = nk0 exp (− k (t − τ1)) , (8)

where nk0 = Nk
 ⁄ Vcr is the concentration of nuclei in the volume Vcr at the onset of coagulation; Nk is the number of

nuclei before their coagulation; nk is the concentration of nuclei after the time t − τ1 from the onset of coagulation.

The coagulation constant k can be determined from the thermogram (Fig. 1a) by the dynamics of the temperature in

the CD section in a time from τ1 to τ1 + τ2; k = 
1
τ2

 ln (nk0
 ⁄ nk). For example, if nk

 ⁄ nk0 = 0.001 and τ2 = 0.2 sec,

then k = 26 sec−1.
On the basis of the foregoing, expression (5) can be generalized with allowance for the fast crystallization at

the initial stage of solidification of the supercooled melt;

η = α + β (1 − exp (− k (t − τ1))) Θ (t − τ1) + (1 − α − β) (1 − exp (− Z (t − τ1 − τ2)
n)) Θ (t − τ1 − τ2) ,

(9)

where α is the portion of the specimen formed from nuclei before their coagulation in the time τ1.
The presence of the Θ-function is due to the fact that heat release begins sharply at the instant of time τ1.

The parameters Z and n are determined by taking twice the logarithm of (9) [17]. The quantity α can be estimated on
the basis of the data on the isothermal crystallization times τ ′′ at QEC and τ3 at NEEC. The quantity ξ = τ3

 ⁄ τ ′′ is
the nonsolidified portion of the specimen immediately after explosive crystallization; then
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α = 1 − β − ξ . (10)

Taking into account the small difference between the temperatures of the furnace Tf and the specimen T, one
can neglect the second term on the right side of Eq. (4) [18]:
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dt
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∆Hliq

cp
 
dη
dt

 ,   T (0) = Tliq , (11)

where
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n−1
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n
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Furnace cooling occurs by the law

Tf = T0 + (Tliq − T0) exp (− γft) . (12)

Solving problem (11), we obtain the equation

T (t) = T1 + 
∆Hliq

cp
 exp (− γ (t − τ1)) ∫ 

τ1

t
dη
dt

 exp (γ (τ − τ1)) dτ , (13)

where

T1 = T0 + (Tliq − T0) 







1 + 

γ
γf − γ




 exp (− γt) + 

γ
γ − γf

 exp (− γft)



 .

The cooling parameters of the furnace γf and the specimen γ are determined from the experimental cooling
curves. Under our conditions, usually γf << γ, and the function of T1 practically coincides with the furnace cooling
function Tf.

The value of η was determined by the DTA curves according to the method of [19]. However, because of the
exponential character of function (9), the error in calculating coefficients α, β, Z, and n leads to noticeable discrepan-
cies between the model and experimental curves. On the other hand, by the CTA cooling curves one can determine

Fig. 2. Cooling curves of pyrocatechol specimens of various volumes [1) V0 =
0.35; 2) 0.8; 3) 1.5 cm3)] at a cooling rate of 0.13 K/sec. T, K; τ, sec.
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fairly exactly the derivative of dη ⁄ dt in the DE section (Fig. 1) that enters into solution (13). Consider Eq. (11). Since
in this section dT/dt = 0, in view of (12) we obtain

dη
dt

 = 
γcp

∗

∆Hliq
 (Tliq − T0) (1 − exp (− γft)) + kβ exp (− k (t − τ1)) ,   τ1 ≤ t ≤ τ1 + τ2 + τ3 . (14)

Integrating (14), we find the empirical time dependence of the degree of transformation η in the DE section:

η = α + β (1 − exp (− k (τ − τ1))) + 
γcp

∗

∆Hliq
 (Tliq − T0) 




τ − τ1 + 

1

γf
 (exp (− γft) − exp (− γfτ1))




 , (15)

where cp
∗ is the mean value of the specific heat capacity of the liquid and solid phases (cpliq and cps near Tliq). With

a correction reducing η to unity at τ > τ1 + τ2 + τ3, this method permits more exact determination of the degree of
transformation.

As an example, Fig. 2 shows the cooling curves of pyrocatechol of various volumes at an equal mean cooling
rate of 0.13 K/sec and at supercooling ∆T− = 18 K (dots show the experimental data, the dashed curve corresponds to
the furnace cooling curve, and the solid curves are model curves calculated on the basis of solution (13) and expres-
sion (14) by means of the Maple 6 mathematical system).

The calculated curves T = f(t) of pyrocatechol of volume 1.5 cm3 at difference cooling rates are given in Fig.
3 (dots show the experimental data).

As is seen from the figures plotted on the basis of the solution of Eq. (11) in the form of (13), in view of
(14) and the experimental data for determining the degree of transformation, the model cooling curves agree fairly well
with the experimental ones. The good convergence of the theoretical curves and experimental data is provided by the
determination of the proposed model parameters by the CTA and DTA curves.

NOTATION

cp, specific heat capacity, J/K; cpliq and cps, heat capacities of the liquid and solid phases in the vicinity of
the melting temperature, J/K; ∆Hliq, specific melting heat, J/kg; k, coagulation constant, sec−1; mcr, mass of the region
with a critical concentration of nuclei c0, kg; m0, mass of the whole specimen, kg; Q, heat released in the process of
coagulation of nuclei, J; R, specimen radius, cm; T, specimen temperature, K; Tm, minimal temperature of supercooled
melt, K; Tliq, melting temperature, K; Tf, furnace temperature, K; T0, ambient temperature, K; Tcr

+ , temperature of criti-
cal superheating of melt, K; t, time; Z and n, crystallization constant and index of the form of nuclei (have fractional
dimensions); Vcr, volume of the region with a critical concentration of nuclei, cm3; V0, specimen volume, cm3; vc,
specimen cooling rate, K/sec; α, portion of nuclei in the supercooled melt formed before coagulation; β, portion of

Fig. 3. Cooling curves of the pyrocatechol specimen of volume 1.5 cm3 at
various cooling rates: 1) vc = 0.24; 2) 0.12 K/sec. T, K; τ, sec.
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melt solidified in the course of explosive crystallization under coagulation of nuclei; ξ, portion of melt isothermally so-
lidified upon explosive crystallization; γ, specimen cooling parameter; sec−1; γf, furnace cooling parameter, sec−1; ε,
emissive factor; ζ, heat-transfer coefficient at the specimen–furnace boundary, J/(m2⋅sec⋅K); η, degree of crystallinity;
Θ(t), Heaviside function; λ, heat-conductivity coefficient, J/(m⋅K⋅sec); ρ, density, kg/m3; σ, Stefan–Boltzmann constant,
J/(m2⋅sec⋅K4); τ1, τ2, and τ3, incubation period, explosive crystallization time, and isothermal crystallization time, sec.
Subscripts: cr, critical; liq, liquid; m, minimum; c, cooling; f, furnace; p, isobaric process; s, solid.
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